Combined Modeling and Side Channel Attacks on Strong PUFs

نویسندگان

  • Ahmed Mahmoud
  • Ulrich Rührmair
  • Mehrdad Majzoobi
  • Farinaz Koushanfar
چکیده

Physical Unclonable Functions (PUFs) have established themselves in the scientific literature, and are also gaining ground in commercial applications. Recently, however, several attacks on PUF core properties have been reported. They concern their physical and digital unclonability, as well as their assumed resilience against invasive or side channel attacks. In this paper, we join some of these techniques in order to further improve their effectiveness. The combination of machine-learning based modeling techniques with side channel information allows us to attack so-called XOR Arbiter PUFs and Lightweight PUFs up to a size and complexity that was previously out of reach. For Lightweight PUFs, for example, we report successful attacks for bitlengths of 64, 128 and 256, and for up to nine single Arbiter PUFs whose output is XORed. Previous work at CCS 2010 and IEEE TIFS 2013, which provides the currently most efficient modeling results, had only been able to attack this structure for up to five XORs and bitlength 64. Our attack employs the first power side channel (PSC) for Strong PUFs in the literature. This PSC tells the attacker the number of single Arbiter PUF within an XOR Arbiter PUF or Lightweight PUF architecture that are zero or one. This PSC is of little value if taken by itself, but strongly improves an attacker’s capacity if suitably combined with modeling techniques. At the end of the paper, we discuss efficient and simple countermeasures against this PSC, which could be used to secure future PUF generations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power and Timing Side Channels for PUFs and their Efficient Exploitation

We discuss the first power and timing side channels on Strong Physical Unclonable Functions (Strong PUFs) in the literature, and describe their efficient exploitation via adapted machine learning (ML) techniques. Our method is illustrated by the example of the two currently most secure (CCS 2010, IEEE T-IFS 2013) electrical Strong PUFs, so-called XOR Arbiter PUFs and Lightweight PUFs. It allows...

متن کامل

Active and Passive Side-Channel Attacks on Delay Based PUF Designs

Physical Unclonable Functions (PUFs) have emerged as a lightweight alternative to traditional cryptography. The fact that no secret key needs to be stored in non-volatile memory makes PUFs especially well suited for embedded systems in which securely generating and storing secret keys is difficult and expensive. Compared to traditional cryptography, PUFs are often believed to be more resistant ...

متن کامل

Efficient Power and Timing Side Channels for Physical Unclonable Functions

One part of the original PUF promise was their improved resilience against physical attack methods, such as cloning, invasive techniques, and arguably also side channels. In recent years, however, a number of effective physical attacks on PUFs have been developed [17,18,20,8,2]. This paper continues this line of research, and introduces the first power and timing side channels (SCs) on PUFs, mo...

متن کامل

Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions

Physical attacks on cryptographic implementations and devices have become crucial. In this context a recent line of research on a new class of side-channel attacks, called memory attacks, has received increasingly more attention. These attacks allow an adversary to measure a significant fraction of secret key bits directly from memory, independent of any computational side-channels. Physically ...

متن کامل

Error Detection Techniques Against Strong Adversaries

“Side channel” attacks (SCA) pose a serious threat on many cryptographic devices and are shown to be effective on many existing security algorithms which are in the black box model considered to be secure. These attacks are based on the key idea of recovering secret information using implementation specific side-channels. Especially active fault injection attacks are very effective in terms of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013